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The independent cardinalities of invariants (SIs) of the dual group and its(2n)-fold uni-
form spin ensembles are derived viaS2n-decompositional approaches. The fundamental
terms arise from character theory, whereas the(2i < 2n) subsidary statistical subsets arise
from arguments based on time-reversal symmetry (TRV) in the context of democratic recou-
pling – an approach consistent with a projective view and also with the nature of (Weyl)
(I • I )1 · · · ( )i · · · (I • I )n single pairwise exchange yielding TRV spin symmetry. In con-
trast to traditional|D0(U)|((⊗SU(2))(2n)) formalisms, democratic sampling and recoupling
now play important roles. As derived via superboson algebra, the dual tensorial properties of
[A . . .](2n) uniform 2n-fold NMR spin systems are seen also as fundamental in defining as-
pects of quantum computing via NMR analogues. Representational aspects of (quasiparticle)
pattern algebras are given for superbosons over dual projective carrier subspaces of Liou-
ville space. Hence an independent Lie-algebraic proof is derived of the fundamental “sign”

structure of superbosons acting on{∑v⊕λ̃ H̃
(̃λ)
v | [̃λ] ∈ Sn; v aux.∈ SU(2) × Sn} carrier

subspaces. This constitutes a direct extension of earlier work [Physica A 198 (1993) 245].
The explicit SI-based tensorialv-auxiliary labels of the latter are defined via the dual action
Ũ × P : H̃ → H̃{· | Ũ ∈ SU(2),P(̃) ∈ Sn} for the dual group and[A . . .]n(Sn) identi-
cal spin ensembles involving high degeneracies. Motivation for the work arose from certain
fundamental quantum questions for dual group actions onmultiple invariant-basedsystems,
themselves subject to projective-compatible,Sn democratic recoupling. to graph-based re-
sults for such specialised uniform systems. Attention is drawn to various correspondences
to geometric, quasiparticle (or superboson) and Lie-algebraic concepts for these systems, as
being of topical interest both to quantum physics and to computing.

KEY WORDS: dual groupS2n invariants and analogous tensorial sets,Sn-combinatorical
decompositions, (super)boson mappings over (Liouvillian) carrier spaces of uniform NMR
multi-spin ensembles, (Liouvillian) representational theory and Lie algebras of the dual group,
S2n-invariants as auxiliary labels of̃Hv carrier space, well-defined fundamental quantum en-
tanglements
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1. Preamble

The value of transformational properties [1,2] as analytic relationships between
distinct graphical recoupling schemes [3] is well established as an important part of
both dual tensorial sets and quantum-Liouville tensorial NMR formalisms. On con-
sidering uniformn-fold NMR spin ensembles, one is concerned also with democratic
recoupling [4], as a consequence of their adapted bases [5–20] being under (automor-
phic) Sn ↓ G spin symmetries – themselves based on specialised zeroth-order forms
of Liouvillians (Hamiltonians). Within the latter, the{JAX} sets of couplings are weak
compared to the variousJAA′ , JXX′ intracluster interactions. We shall restrict our dis-
cussion (without loss of generality) to the[A]2n, [AX]2n NMR spin systems [6–11],
for which a wider appreciation of (dual) tensors, and their dual group-based invariants
(SIs) and projective techniques, all prove invaluable. In order to define theSn auxiliary
tensorial labels (or recoupled forms), a precise knowledge of the cardinality of these in-
herent SIs is necessary. Integer-rank tensorial formalisms themselves are prerequisites
to, e.g., modern (operator-basis) studies of NMR evolution, of isotropic mixing-induced
coherence transfer [14–20] or of intracluster-based spin relaxation processes. The au-
tomorphic spin symmetries defining spin subsystems represent extensions to known
GLn ⊃ Sn ⊃ · · · ⊃ G chain properties [12,13], which are of wider conceptual sig-
nificance to spectroscopy. TheseSn chain properties utilised in the text are specific to
uniform multiplespin systems,[A]n/[AX]n, whereas the optical spectroscopies are gen-
erally based on the othogonal groups and their distinct subduction scheme.

The purpose of this work is to address the nature ofSn projective models, and var-
ious related conceptual ideas, since dual group mapping has significantly contributed to
the foundations of quantum physics, as well as yielding the prospect now of novel in-
sights into topicalaspects of quantum computing. Before proceding further, one should
note the existence of strict group-theoretical limitations to simple analytic algebraic cor-
relations between{3nj}-graphical formalisms [3] and the totallydemocraticSn group-
based forms [4]. Where such analytic forms exist, they are restricted to certain spe-
cific few-body systems whose recoupling may be characterised by (tridiagonal) Jacobian
forms [4], for which eigenvalues are universally derivable. Theorigins of the (analytic)
disjuncturebetween graphical and democratic recouplings (or chain sequences) in all
other cases is simply due to the higher levels of degeneracy found in the generalised
[A . . .]2n(S(2n)) | 2n � 4 type spin (sub)systems, all of which lie beyond theS4 ↓ D2

automorphic group limit given originally by Galbraith [21] in his 1972 work. The origin
of this limitation alternatively may be viewed as one arising from the overall system-
dependence onmore than a single scalar invariantfor specific highn-fold spin symme-
tries of[A . . .]2n/[A . . .](2n+1): (2n � 4) spin ensembles. This is an especially insightful
view. One also notes that the admixture of graph theory for recoupling, or in defining
SIs [22,23], to essentially projective (quasiparticle, or group subduction) methods for
other quantum properties is neither tractable, or sufficiently general above 2n = 10, to
be useful in forming higherS2n dual tensorial structures. This point also deserves wider
recognition in the literature.
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Despite the above limitations to democratic recoupling,(SU(2)×)Sn-based qua-
siparticle or analogous projective methods (over Liouvillian carrier space) offer novel
physical insight into spin dynamics, once the impact of scalar invariant cardinalities
(based on time-reversal invariance [22,23] and its numerical coefficients [24,25] of some
specific model) is recognised. As the nature ofquantum entanglementsof quantum in-
formatics and computing mirror certain fundamental aspects ofn-fold NMR spin ensem-
bles, the questions raised here are clearly of wider topical interest. The NMR systems
of use in modelling quantum informatics (teleportation) typically include bases compa-
rable to those under (dominant intracluster) (isotropic) coupling [22] or other (dipolar)
isotropic interactions,̂L = [Ĥsc, ]−, discussed here.

An understanding of the specific role(s) of various projective methods in defining
dual tensorial sets, their auxiliary labels and associated (independent) scalar invariant
cardinalities,|SI|s, is of fundamental importance to quantum physics. NoSn projective
formalism for the cardinality of the SIs has appeared previously in the literature. In
addition, the fuller significance of augmented dual quasiparticle formal mapping [26–
31] deserves to be more widely recognised as a powerful projective technique. It defines
the Liouville space mappings as a closed superboson algebra [28] based on the dual
mappings:

Ũ × P : H̃→ H̃
{
Dk

(
Ũ
)× ̃ [̃λ](v)(P) ∣∣ Ũ ∈ SU(2),P ∈ Sn

}
, (1)

with the structured carrier subspaces here defined via the auxiliary democraticv-labels,
as in section 6.2. Linkage of superboson algebra to Lie algebra is developed in the main
text. Our earlier work stressed that superbosons are the equivalent of Wigner fundamen-
tal unit (super)operators; thus, they transform as irreps under the dual product group,
SU(2) × Sn. Novel usage of additionalSn techniques [24,25,32–35] is stressed in de-
riving the independent SI cardinalities via certain explicit time-reversal coefficients with
a democratic recoupling (sampling) context. This constitutes the specific purpose in re-
porting this work, in which we shall focus on various general aspects of the NMR of
regular uniform (cage-like) spin ensembles,[A . . .]2n(S2n), for highern-fold indices, in
the range 2n ∼ 12, 20.

In addition to involvement in dual map actions, the role ofSn-combinatorics in
spin physics is examined, with theSn-group properties viewed as part ofalgorithmic
symboliccomputing [32–34]. In this context, the nature of general decompositional
processes is important for its conceptual value for the invariants [24] and also in al-
ternatively deriving the auxiliary label sets from subduction pathways of [25]. Here
the specific role of the reduction coefficients generated from Yamanouchi stepwise
Sn-chain subduction processes [24,25,35] should be noted. Both of these mapping tech-
niques are invaluable in defining the fundamental SI cardinality, e.g., as in the enumera-
tions of section 4 below. Since the entanglements of quantum informatics and computing
(teleportation) necessarily mirror certain fundamental (superpositional basis) aspects of
n-fold NMR spin ensembles, the questions raised here are of wider topical interest. This
point arises from the Liouvillian mappings involving explicit auxiliary labels, a point
often overlooked in discussions of the foundations of quantum physics.
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After a brief overview of additional context, including CNP weight properties
isotopomers, section 3 gives a brief overview of some specialised forms of combina-
torial functions for their pertinence to Weyl’s TRV-basedpre-graph recoupling theory
view of scalar invariants. Subsequently, the fundamental components and the subsidary
(2i) < 2n statistical contributions to the number of independent scalar invariants for
2n-fold identical spin ensembles under the dual group are considered in sections 4, 5,
in terms of explicit mathematical decompositions; thereafter, section 5 focusses more
especially on the role of certain bi-, quadra-partiteSn character sets of smaller related
Sn groups (those associated with((. . .)(. . .)) or ((. . .)(. . .)(. . .)(. . .)) block permuta-
tions which need be excluded from extended Weyl TRV models). The fundamental
and corrective terms are discussed for a couple of specific(2n) identical spin ensemble
applications. Dual group representation theory is extended in sections 6.1, 6.2 and ap-
pendix A, particularly in relation to (super)bosons of pattern and Lie algebras. The final
focus here is on the structure of the dual group carrier spaces, whether one is considering
problems described in terms of Hilbert or Liouville space formulations. Section 7 sum-
marises the correspondence between these algebras and certain standard NMR tensorial
properties [1,2,14,15] as analytic transformational properties allied to graph recoupling
schemes. Subsequently, section 7.2 focusses on the role of inner tensor products (ITPs)
in the formation of integer-rank democratic dual tensorial sets. This serves to intro-
duce section 8 which gives a brief overview of the inherent structure derived for these
dual tensorial sets, with the discussion restricted to (integer) componentk rank (alone)
descriptions abovek = (n/2), essentially for reasons of generality. Our concluding re-
marks in section 9 focus on the generality of the techniques adopted here, on the role
of geometric combinatorics in physics, as well as stressing the pertinence of (auxiliary)
tensorial structure in discussing quantum computing and the foundations of quantum
mechanics from a Liouvillian carrier space viewpoint.

The notation adopted throughout the text derivesdirectly from standard usageof
Sanctuary [1,3] and Biedenharn and Louck [2,26,27], all of whom have contributed to
the foundations of quantum physics. Here quasiparticle formalisms (originally due to
Biedenharn and Louck [26,27]) now in a recently extended Liouville space form, are
of particular value to NMR spin dynamics [28]. Apart from the terms FG, and ir-
reps/reps for finite groups and the now well-established Biedenharn shorthand for ir-
reducible and generalised representations, the mnemonics used herein consists of SI
(|SI|), TRV, YC and YmS, for scalar invariants and their cardinality, time-reversal invari-
ance, Yamanouchi chains and permutational symbol, respectively. Certain additional
mnemonics (of group theoretic or combinatorial origins), such as ITP, LR, SF, etc., are
all carefully defined on first usage.1 Finally for clarity, we stress that the·̃ (tilded) quan-
tities, labelskqv and projective actionP all refer to Liouville space formalisms, whose
democratic (as compared to graphical) recoupling (see section 7) is denoted by the alter-
native auxiliary set{Ṽ} (compared to{K̃}) of integer rank tensor notation.

1 With the exception of the mathematical termsλ � n, •≡ for respectively “number partition ofn”, and
“defined as”.
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2. Initial specific contextual discussion

2.1. Dual group invariants and their tensorial sets

The scalar invariants defining uniformn-fold NMR spin ensembles under certain
established types of (liquid, or mobile liquid-crystal mesophase, based) NMR Hamil-
tonians, may be interpreted in terms of either the implied(⊗SU(2))2n decompositional
formalism for the|D0(U)| frequency, or (equally and perhaps better) in terms of an
appropriateSU(2) × S2n (or bipartite) dual group algebraic model. The essential role
of time reversal symmetry factors [22,23] is retained in both approaches.2 Clearly, the
SU(2) × S2n restricted aspect of the dual group itself is fundamental to the study of
(democratic-based) scalar invariants, since theSU(2)× S2n dependence holdsirrespec-
tive ofwhether the[A . . .](Ii )(2n)(SU(m)× S2n) spin systemactually pertainsto a uniform
multiple spin-one-half ensemble, or to someuniform higher SU(m � 2) unitary alge-
bra. Hence, the actual number of independent scalar invariants (SIs) is a property of
fundamental importance to (auxiliary) tensorial structure, with various interesting com-
binatorial properties.

For certain initial small(2n (< 10)) fold systems and within an “auf-bau” con-
structive process, Corio [22] utilised the early (i.e., pre-1950s graph theory)(⊗SU(2))2n

direct-product bracket (linear-recoupled) notation, adopted from Weyl [23], to estimate
the number of independent scalar invariants. However, the invariants of uniform spin
systems arise indirectly in dual-group quasiparticle mapping formalisms originally due
to Biedenharn and Louck [26,27] in which mapping over a carrier space plays a fun-
damental role. In the context of stationary Liouvillians [3,14–20] of NMR spin dy-
namics (utilising integer-rank tensorial bases), a recent realisation of dual mapping over
the Liouville-augmented carrier space-based superboson mappings of [28] explicitly in-
volves the auxiliary SI-based labels. The main text sets out the necessary additional sta-
tistical (non-QP) mappings involved in deriving the cardinalities of uniform spin ensem-
ble SIs at the kernel of this work. Generalised dual tensorial sets, as structures [29–31]
with specific{̂λ} Schur-function-based origins and specific finite group embedding prop-
erties are the subject of related work on the role of combinatorics in spin physics [22–38].

Dual group treatments of NMR are a logical conceptual consequence of Balasub-
ramanian’s discussion [6] of spin ensembles which exhibit permutational properties, in
terms of group automorphisms. The latter arises directly from the nature of certain
· · · Sn ⊃ · · · ⊃ G chain properties. In contrast to conventional rovibrational spectral
subduction chains (involving the orthogonal group) for uniform NMR ensembles, it is
now theSn-based theoretical physics group-chain,3 which is pertinent. Descriptions of
spin ensemble properties and their democratic system invariants follow directly. The lat-
ter point stresses the fundamental difference in viewpoints between those of the present

2 For technical reasons, the distinction between even and odd sets of spin operators is a cogent point in
both types of modelling with the odd spin operator set derivable from the cardinality of the immediate
preceding “even” indexed set.

3 Rather than that containing the orthogonal group(s), as in other types of spectral problems.
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author and earlier workers.4 For an introduction to modelling via discrete mathemat-
ics and theGLn ⊃ Sn group properties, references [24,25,29–36] should be consulted.
The conceptual linkages betweenGLn, Sn groups and the invaluable physics role of
Schur functions, i.e., mapped on to restricted subgroup spaces, are now well-established
ideas [12,13,29–34,36]. Subsequent interest [37,38] in the role of theSO(5) group and
its subgroups in quantum physics is of recent origin. Such developments are of specific
pertinence to Liouville space descriptions of NMR spin dynamics, as theSU(2)×SU(2)
group is a direct subgroup ofSO(5).

More general specific discussions of the value to physics of traditional combina-
torial methods, and of theSn group with its Young tableaux notation, may be found in
the 1994 physics text due to Sternberg [39]. Full details of (Yamanouchi group-chain)
subduction processes, in terms of Young tableaux, and comments on precisely how to
implement the Littlewood–Richardson (LR) rule for outer product decompositions are
given there. Examples of enumerative applications in wider chemical physics spin en-
semble problems, or of various combinatorial ideas derived from [24,25,32–35], may be
found in recent related works of ours [5,29–31,36], or else in the extensive body of CNP
enumerative work, due to Balasubramanian [40].

2.2. Contrasts between NMR dynamical structure and CNP spectral weight aspects

The most fundamental question addressed in the present work concerns the con-
sequences of themultiple scalar invariantnature of highly degenerate democatically
recoupled quantum spin systems and the resultantdisjuncturein graphical versus pro-
jective (or group-subduction-based) analytic models under these circumstances. This
may help to explain the intractability of certain NMR ensemble systems, i.e.,beyond
those of the simplestA[X]3, or [A]4, [AX]4(S4 ↓ D2) forms. This underlying difficulty
in treating highly degenerate spin systems specifically beyondSn�4 ↓ G has not been
recognised adequately in, e.g., the general NMR literature. Its origin is due specifically
to the presence of themultiple invariants, which are themselves essential to definitions of
auxiliary aspects of tensorial sets associated with uniformn-fold spin ensemble systems.

Our concluding remarks focus on the practical effect of these multiple invariants
within a spin ensemble, and on a recent (if limited) advance which may in part resolve
such questions.5 Rather, it presents aspects of theoretical physics which are effectively
modelled by NMR, stressing the nature of dual group decomposition in finding the num-
bers of independent scalar invariants which define the auxiliary labels. The latter are
associated with both dual tensors (bases) and with obtainingsimple-reduciblesuperbo-
son carrier subspaces for quasiparticle formalisms. The conceptual material of the main
text spans several distinct areas, and highlights specific contrasts to other (either graph-
recoupled, or product basis) NMR work (i.e., involving commutation rules [42], or else,

4 As compared to either Corio’s 1962–1968 insights [7,8], or his later augmented views discussed in [22].
However, even Corio’s earlier theoretical analysis [7] implies a role for combinatorics in spin algebras.

5 For clarity, we stress that this paper isnot concernedwith Hilbert operator methods in spectral calcula-
tions, see [41].
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the so-called isotropic mixing techniques [43,44], from the zero-order form of scalar
interaction, in coherence transfer [14–20] or multiquantum properties of symmetry-
adapted spin systems [45–49]).

An additional role for ITPs occurs in a range of examples [49] involving extended
caged-type multispin ensemble CNP statistical spectral weighting. Here, the total spin
symmetry versus orbital symmetry is governed by a product constraint in the form of

nucl. spin

(
fermion

boson

)
× ro-vib

(
SO(3) ↓ G) → {

A2

A1
, (2)

as noted in various (cycle-indexed based) works of Balasubramanian [40]. Except where
indicated otherwise, only the nuclear spin symmetry properties, as derived from the
analogous NMR Liouvillian view for dominant intracluster couplings set(s) as networks
associated with an automorphic spin symmetry [6], are considered in the remainder of
this paper. The interdisciplinary nature of NMR ensures that its models and applications
draw extensively on concepts from theoretical physics with the latter including concep-
tual areas of both symbolic computing and discrete mathematics.

3. Beyond Weyl (̂I • Î)(̂I • Î) · · · (̂I • Î)-bracket recoupling: SIs via S2n

combinatorics

Since Weyl’s bracket dot-product notation [23] predates both graphical and demo-
cratic schemes for recoupling, it could hardly be expected to yield functional forms of
a more general type. However, initially these bracket models corresponded directly to
the (2, . . . ,2) type of multinomial partition (not previously mentioned in the physical
science or NMR literature, to our knowledge) where for integer values ofn/2,(

(n)

2,2, . . . ,2

)/
(n/2)! •≡ n!

2!2! · · · 2!
/
(n/2)!,

so that the evaluation of the(2n) = 6 specialised partition becomes

N
(6)
SI ≡

(
(6)

2,2,2

)/
3! = 15,

a physical result, known from the earlier(⊗SU(2))(2n) formalism [22] with its linear
recoupling. Further cardinalities of independent scalar invariants for modest index ar-
guments are in accord with a difference expression,provided uniform spin time-reversal
invariance(TRV) symmetry involving democratic recoupling and sampling (extending
Weyl pairwise views [21]) may be simply incorporated into the scheme. At or above
N
(12)
SI , no overall scheme for the coefficients of the various structured multipartite com-

ponents exists, to the best of our knowledge. As the Weyl scheme is neither a pure
graphical (or a fully democratic [4,21]) form of recoupling, this is perhaps predictable.
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As a simple example of the (extended Weyl) system, the 2n = 8 case is interesting
with its |SI| realised as

N
(8)
SI ≡

(
(8)

2,2,2,2

)/
4! −

(
(6)

2,2,2

)/
3! + 1 = 91. (3)

In addition for the number of independent scalar invariants of the (highest acessible)
2n = 10 case, the TRV-weighted form, e.g., becomes

N
(10)
SI ≡

(
(10)

2,2,2,2,2

)/
5! − 3

(
(8)

2,2,2,2

)/
4! − 2

(
(6)

2,2,2

)/
3! + 3 = 603. (4)

For these simple cases, the various weighting coefficients are simple integers, corre-
sponding to the numbers of ways the (current) multinomial term can be inserted into
the (left-hand) next higher(2,2, . . . ,2) component with due allowance being made for
time-reversal (i.e., single pairwise permutational effects). Such a stepwise progressive
view is of much less assistance in the region 20� (2n) � 60, where new insight may
be sought only from the projective properties of the dual group, rather than directly
from the (possibly more restricted) traditional frequency of occurence ofD0(U) group
representations. Clearly in discussing single pair-exchange processes, Weyl’s bracket
structure exhibitslinear recoupling; thus it lacks the democracy associated with projec-
tive treatments of uniform spin systems. This point is important once one searches for
|SI|s of (2n) � 10 and higher 2n-fold ensemble systems. With its underlying geomet-
ric basis, polyhedral combinatorics is needed to visualise recoupling in a non-graphical
democratic view for the uniform multiple spin ensembles discussed here.

4. N
(2n)
total:SI via S2n-projective map decompositions onto the N(2n)f , (N

′(2n)
f ) Sn

fundamental(s) and a series of weighted (2i) < (2n) N(2i)SI terms

Considering the number of scalar invariants (SIs) in terms of the dual group
SU(2) × S2n leads one to the following mathematical decompositional view, where the
Weyl time-reversal invariance (TRV) modifies the additional weighted (2i)-based (earlier
total) components, derived from all(i < n) total terms within the (two-part) statistical
mapping expression:

N
(2n)
total:SI≡

(
N(2n)f − N′(2n)

f − N′′(2n)
f

)+ {
N
(2n−2)
total

(
n

1

)( ︷ ︸︸ ︷(
Î • Î

) · · · ( Î • Î
)(

Î • Î
)

1
)∗

+N(2n−4)
total

(
n

2

)( ︷ ︸︸ ︷(
Î • Î

) · · · ( Î • Î
)

1 1
)∗
/f1(to) · · ·

+N(...)total

(
n

n− 2

)( ︷ ︸︸ ︷(
Î • Î

)(
Î • Î

)
1 · · · 1

)∗ + 1

}
, (5)

where the∗ starred combinatorial arguments above are democratically sampled, while
thefi factors are the (now explicit) inverse (extended Weyl) TRV factors. Clearly, the
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(̂I• Î) pairs are progressively replaced by1, unities in the{·} statistical weight portion of
the above model. Comparison of the above dual group decompositions, initially for spe-
cific n < 5 SI values, yields a set ofidenticalcardinalities for the independent SIs, which
are totally consistent with the(⊗SU(2))(2n) product approach via theD0(U) frequency
product decomposition with its original linear recoupling and TRV forms:∣∣D0(U)

∣∣((⊗SU(2)
)2n)
.

The specific form(s) used for the set of (initial) fundamentalNf terms, on considering
the first fewN(2n)total:SI for 2,4,6,8 � (2n) values, corresponds to another established the-
oretical physics mapping concept [50]. One notes also thatN′(2n)

f , as corrective terms,

arise from the need to exclude((. . .)(. . .)) or ((. . .)(. . .)(. . .)(. . .)), etc., sector permuta-
tions, since only the lone bracket(̂I • Î) pairs are functional exchange arguments in the
proper derivation, of time-reversal invariance defining the total number of independent
SIs.

It will be seen that there is a subtle distinction between the(⊗SU(2))(2n)-based
Corio–Weyl approaches and a truly democratic dual group viewpoint. This concerns the
contrasts between the implied linear recoupling of Weyl brackets involving time-reversal
invariance, as in Corio’s essentiallyunitary presentation [22], and the dualtotally pro-
jective views associated withSn democratic recoupling. This novel view is shown in
equation (5), where the bracket operator pairs in the Weyl–Corio view [22,23] imply a
specific linear ordering in the recoupling of Weyl brackets, which is in direct contrast
to the projective notation, above. In the latter, allÎ • Î terms form part of a democratic
(recoupled) model, reflecting theuniform cageview of these (identical) spin ensembles,
e.g., as pertinent to1H dodecahedrane or13C60 fullerene and to polyhedral combina-
torics. Further comments on the form of such overall models are deferred until the end
of section 5.

5. Role of Sn, Sn/2 group characters in defining the N(2n)f , N′(2n)
f terms

By comparison of each new(2n)-based result in a series with the hierarchy of
unweighted fundamental components (of left-hand{·} brackets of equation (5)) within
the series of(⊗SU(2))(2n) equivalent decompositions, it may be shown that the general-n

sums of squares ofSn bipartite characters play a central role in defining the mathematical
decomposition of the 2n-fold product, viaN(2n)f as a sum over bipartite irreps (in the
Butler 1971 irrep notation), as

N(2n)f ≡
[(n/2)]∑

bipart [λ]=[0]

(
χ
[λ]
1n

)2
(Sn). (6)

From this equation and analogous expressions for corrective terms onSn/2 (for non-TRV
active(. . .)(. . .) block permutations of still higher(2n) cases) particularly simple forms
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for all the fundamental terms of the hierarchy are obtained. The remainder of the prob-
lem (i.e., within the braced portion of equation (5)) is thus reduced to forms involving
statistical weightings of preceding steps for the (overall)N

2(n−i)
total:SI values. Hence, for the

nearly maximal(2n = 10) spin ensemble, the full calculation now has the following
combinatorial structure under theSU(2)× S2n dual group:{

(42− 0)+ 91

(
5

1

)
+ 15

(
5

2

)/
2+ 3

(
5

3

)
+ 1

}
≡ 603, (7)

for N(10)
SI , where the right-hand difference now refers to the earlier multinomial parti-

tional view, a result derived in equation (4). The fundamental term and its correction for
the(2n) = 10 case arise from the (bipartite irrep) expression

N(10)
f =

∑
[λ]

(
χ
[λ]
1n

)2 ≡ {
12 + 42 + 52}(S5) (8)

and the recognition thatN ′(10)
f vanishes identically here, as(n/2) group index is not

integer; hence, the respective terms become 42 and zero.
Further for the((2n) = 12)-fold spin ensemble, corresponding to simple icosahe-

dral (natural group-embedded) spin symmetry, the fundamental component is now:

N(12)
f ∼ {{

12 + 52 + 92 + 52} ∣∣ bipart char(set) ∈ S6
} = 132, with

N′(12)
f ≡ |S3| (= 6), (9)

based respectively on the appropriate bipartite character (char) set and on theN ′(12)
f cor-

rective term of the correspondingS(n/2)=3 algebra – so as to evaluate (and thus exclude)

(. . .)(. . .) versus(. . .)(. . .)
′

double-pair sector permutation. From these preliminaries,
the number of independent SIs for this (evenn value) (2n) = 12 (icosahedral-based
cage) spin ensemble gives{

(132− 6)+ 603

(
6

1

)
+ 91

(
6

2

)/
5+ 15

(
6

3

)/
2+ 3

(
6

4

)
+ 1

}
= N(12)

SI . (10)

Hence, numerically one finds that the overall SI is given byN(12)
SI = 4213, just as found

on decomposing the|D0(U)|((⊗SU(2))(2n)) expression for(2n) = 12. Thus, whether a
purely linear or fully democratic explicit TRV model is adopted for the form of recou-
pling is not significant to the result of (lown) enumerations, i.e., this being soprovided
(iff ) a corresponding series ofregular geometric solidsactually exists.N(12)

SI represents
a limiting case to democratic recoupling and the dual group approach via uniform solid
geometric (cage) models. Clearly, no intermediate componentNSI sets, or indeed suit-
able{f (2i)i } Weyl TRV factors, are available in estimating the cardinality ofN(20)

SI – only
theS10-based fundamental term

N
(20)
f =

[10]∑
bipart λ

{
χ
[λ]
110

}2 = 16796, (11)
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Table 1
The fundamentalN(2n)f , N′(2n)

f , . . . ,
∑(f ) terms and a set of statistical contributions over all(2i) < (2n)-

based SIs toN(2n)total:SI, the total number of independent SIs. TheN(2n)total:SI values for the total numbers of
independent scalar invariants obtained via a democratic, projective mapping approach over separate funda-
mental and TRV weighted components. Here, the fundamental components are over the complete (2n) Weyl
bracket range, whereas the statistically weighted contributions involve progressive bracket replacement by
unities within the functional argument, together with the use of earlier (2i)-based|SI| values. The influence
of Weyl TRV symmetry is evident in the factors (denominators) arising in this latter statistical portion of

the calculation.

n N(2n)f −N′(2n)
f −N′′(2n)

f → ∑(f ) N(.(.)(.)1);N((.).(.)11);N((..).111)N((.)11);N(.11) N
(2n)
total:SI

2: 2 = 2: 1 3

3: 5 = 5: 3
(3
1
)

1 15

4: 14 2 = 12: 15
(4
1
)

3
(4
2
)

1 91

5: 42 0 = 42: 91
(5
1
)

15
(5
2
)
/2 3

(5
3
)

1 603

6: 132 6 = 126: 603
(6
1
)

91
(6
2
)
/5 15

(6
3
)
/2 3

(6
4
)

1 4213a

7: 429 0 = 429: (30,537)b

8: 1430 24 2 = 1404: (227,475)b

10: 16796 119 0 = 16,677: (6,192,443)b

12: 208012 714 6 = 207,292: (. . . )b

aThe denominators 2 or 5 of the various combinatorial weighting terms here correspond to democratic
TRV-based SI properties derived over regular geometric models.

b Not accessible under dual group projective mapping for lack of a(2i) < (2n) progressive series of TRV
factors and related solid-geometric models for(2n) � 14; this is essentially a mathematical limitation,
comparable to Galbraith’s earlier observation [21] concerning analytic constraints to multiple-scalar-
invariant-based spin systems, with high degeneracies.

from the generalS10 character algebra, and the initial correction

N
′(20)
f (S5) =

∑{
χ
[0]
15

}2 + {
χ
[1]
15

}2 + {
χ
[2]
15

}2

are accessible – as summarised in context in table 1.
In presenting specific views of time-reversal symmetry, under the dual group via

expressions similar to equation (5) here, it will be observed thatbeyondthe modest en-
semble(2n) values considered in [22] uniform model derivation of the (now explicit)
TRV factors becomes non-trivial. Under democratic recoupling, the cause of this is
clear. Some type ofregular solid-geometric modelis necessary in order to derive these
fi TRV-factors, but for(2n) > 12 uniform spin systems this is not mathematically at-
tainable over the full progressive stepwise propagation, from the right-hand portion of
equation (5). Indeed, whether Corio–Weyl type enumeration of the number of indepen-
dent scalar invariants with its implicit TRV symmetry represents the full contraction for
the actual specific numbers of independent scalar invariants – i.e., for uniform(2n)-fold
ensembles, such as those corresponding to[1H12C]20 dodecahedrane or higher regular
cage isotopomers – still remains an open question. Since theS2n group and unitary
group approaches are necessarily interrelated views of the same physical phenomena,
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one may well question whether thefull purely unitary contractionfor SIs is reliable for
highest 2n values, when derived via linear (or graphical) recoupling over theseuniform
spin ensembles representing polyhedral networks.

6. Quantum physics overview: Dual-group irreps and (super)bosons in a
Lie-algebraic context

The properties described in equation (5) are those of the dual group inherent in spin
and theoretical quantum physics, with its(U×P) projective mappings acting over some
(SU(2) × Sn) carrier space. They arenot simply a set of equivalence labels invoked
for their notational convenience, as one frequently encounters, e.g., as in theories of
electronic structure [51] and bonding. We shall discuss Hilbert, Liouville carrier spaces,
their boson (superboson) mapping over theseH (or H̃ ≡ ∑

v H̃v) carriers which via the
SIs orv auxiliary labelling govern the actions of bosonic entities. The notation employed
follows essentially from the standard forms adopted in [26–28]. The first subsection, on
Hilbert space dual group representational aspects of boson pattern algebra, is given to
set the material of the subsequent section in its proper conceptual context. In addition,
an additional independent proof is given in appendix A for the representational structure
of superbosons. This doesnot invokenow explicit calculations involving the Heisenberg
super-generator(s) [28], or its right-derivation properties.

6.1. Quantum physics via Hilbert space boson mappings

In order to subsequently understand the representational aspects of Liouville space,
it is first necessary to introduce some discussion of Hilbert space in terms of boson
pattern algebras [26,27]. Since the scalar invariants whose independent cardinalities
were derived in earlier sections apply directly to Hilbert formalisms, this subsection
serves to link the two conceptual quasiparticle mappings of NMR interest. A totally
general consequence of boson/superboson mapping is that it defines the completeness of
irrep tensorial sets under the dual group [26,27], as in{

Dj(U)× (P) ∣∣U ∈ SU(2);P ∈ Sn
}
,

where the Gel’fand type pattern bases [26,27] arise from the (Hilbert) maps onto the
conventional basis set, such as{∣∣∣∣(2j 0

j +m
)〉}

≡ {|j,m〉}.
The correspondence between the various Weyl, Gel’fand and boson-pattern algebraic
notations is treated at length in [2,26,27]. Here, the Biedenharn and Louck defined{ai}
bosons act as Wigner fundamental operators (WFO) [2], as in, e.g.,〈

1
1(1
0

) 0

〉
|jm〉 ≡

[
(j ±m+ 1)

(2j + 1)

]1/2

|j + 1/2,m ± 1/2〉, (12)
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and a further expression obtained via the actions of the corresponding(j + �) = 0
(zeroth shift term) boson:〈

1
0(1
0

) 0

〉
|jm〉 ≡ (∓)

[
(j ∓m)
(2j + 1)

]1/2

|j − 1/2,m± 1/2〉. (13)

The unitary transformational properties arise fromU rotational actions on members
of the basis set:

U|jm〉 ∼
∑
m′
Djm′m|jm′〉; (14)

similar transformations apply toU actions on the{〈2j [·] 0〉} Wigner fundamental (unit-
tensor) operators (i.e., alias generalised bosons). All of these actions arise via the unitary
rotations on añn unit “celestial sphere”:

U ∼ exp
{−iφ

(̃
n • (σ/2))}, (15)

for φ some angle oñn, and their Lie algebra, as realised via equations (6)–(12) of [27].
The full dual action, which now includes permutational forms (via Yamanouchi sym-
bols), for the boson set on vacuum space (equations (32), (33) of [27]) arises from
the fact that theU and P actually commute; the corresponding Liouvillian operators
Ũ andP(Sn) necessarily behave similarly. The scalar invariants associated with these
bases (and WFOs) necessarily are of a form dictated by the dual group, where the lat-
ter includes both conventional eigenvalue sets via democratic recoupling and labelling
associated with irreps (Young tables under· · · ⊃ Sn−i chain), within the stepwise sub-
duction [24,25,35] of the Yamanouchi chainSn ⊃ · · · ⊃ S2.

For Hilbert space the role of a carrier space is especially straightforward [26,27],
with permutational aspect of the basis described by a Yamanouchi symbol, so that in
general one has

∣∣(ī1ī2 . . . īn): jm〉≡ 1∑
0: k̂1...̂kn

〈(
2j 0

j +m
)∣∣∣∣〈1

[
î1

k̂n

]
0〉 · · · 〈1

[
în

k̂1

]
0〉

∣∣∣∣(0 0

0

)〉
· · ·

· · · a(1)
2−k̂1 · · · a

(n)

2−k̂n |0〉, (16a)

or some equivalent form such as, from the standard properties,

∣∣(ī1 . . . īn): jm〉≡ 1∑
0: k̂1...̂kn

〈
(2j 0)

∣∣〈1[
î1

k̂n

]
0〉 · · · 〈1

[
în

k̂1

]
0〉∣∣(0 0)

〉∣∣∣∣1 0

k̂1

〉
⊗

· · · ⊗
∣∣∣∣1 0

k̂n

〉
, (16b)

where the(ī1. . .īn) term, with 2≡ 0 over{0,1}, is the Yamanouchi symbol (YmS) [26,
27,39] corresponding to[(n/2) + j, (n/2) − j ], and〈1 [·] 0〉 are the standard bosons
or WFOs, whose actions were described in equations (12), (13) above. Theî, k̂ “hatted”
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quantities are ordered(j +�), (j +m) abbreviated indexed-terms – as defined in detail
at the end of appendix A.1. Naturally, the orthonormal basis on left-hand (LH) side is
within the usual constraints(n/2� j � 1/2,0) and−j � m � j .

Hence, for(ī1 . . . īn) a Ym symbol, the formalP(Sn) projection, as the equivalent
to theU action given above, then takes a form similar to that of equation (14), namely:

P
∣∣(ī1 . . . īn): jm〉 ≡ ∑

(ī1...īn)
′

[(n/2)+j,(n/2)−j ]
(ī1...īn)(ī1...īn)

′ (P)
∣∣(ī1 . . . īn)′: jm〉

, (17)

where the sum is taken over the primed Yamanouchi symbols and thes are irreps of
the symmetric group (actions) associated with the dual group. This implies that the
{|(ī1 . . . īn): jm〉} set is a complete and irreducible set:{

Dj (U)⊗ [n/2+j,n/2−j ](P)},
within which 1/2 (or 0)� j � n/2; this acts over some specific carrier space, such as

H ≡
⊕
λ=(·)

H(n/2+j,n/2−j), (18)

or more explicitly for the set components:{∣∣I (M = I )〉; ∣∣I (I − 1)
〉; . . . ; ∣∣I (M = 0)

〉}
≡ {[0]; {[0] + [1]}; . . . ; {[0] + [1] + · · · + [n/2− 1] + [n/2]}}, (19)

where we have utilised the Butler contracted (last digit of binary) permutational-irrep
notation of [13], and where the inner ensemble(i1 . . . in) components of the basis have
been suppressed for brevity. The individual component sets on the right-hand side here
are simply Schur functions [29–31]. Thus, the left-hand basis of equation (16) may be
represented as dual irreps in terms of certain specific Weyl and standard Young tableaux,
with numerate forms set out in equation (56) of [26,27]. Furthermore, the absence here
of any reference whatsoever to the auxiliaryv, ∈ SU(2)× Sn terms is in strong contrast
to the following equivalent mapping over carrier space of the augmented spin spaces
of section 6.2 below. Some consideration both, of how multispin bases are formed via
recoupling, and of how such tensorial forms (rather than simple shift bases [52–54],
or else generalised projective{|IM〉〈IM|} bases [55]) may be adapted to transform as
irreps under the dual group is important, e.g., in proceeding from Hilbert space to sub-
sequent Liouville space discussions of NMR spin dynamics.

We now turn to consider the equivalent actions of superbosons involving map-
pings over the augmented carrier space pertinent to NMR spin dynamics originally de-
scribed [1,3,14,15] in terms of quantum-Liouville (QL) formalisms and simple tensorial
basis sets established in the mid-1970s. The pertinance of superboson mappings to QL
formalisms, with their correlation to the Biedenharn–Louck pattern algebras of Hilbert
space, lies in its wider conceptual value for applications. In order to proceed further, the
impact of the (Hilbert-space-defined) scalar invariants (SIs) on the augmented carrier



F.P. Temme / Quasi-particle dual mappings 295

space formalisms needs to be examined – essentially from the viewpoint of the reten-
tion of simple reducibility in establishedSU(2)×Sn dual tensorial formalisms involving
carrier subspaces.

6.2. Dual group superboson mappings pertinent to the QL tensorial formalisms

From the QL equation of [14,15], one may readily derive a dual group form as

−ih̄φ̇kq
(
v: [ λ̃]) ∼ ∑

k′′q ′′v′′

〈〈
kqv

[
λ̃
]∣∣L̂k′q ′(v′)∣∣k′′q ′′v′′[ λ̃]〉〉φk′′q ′′(v′′: [ λ̃])(t = 0), (20)

for which the Liouvillian has the form (to zeroth order, i.e., as it occurs in systems with
weakinterclustercouplings compared to their dominant{JAA′ }, . . . intracluster interac-
tion set(s)):

L̂ ∼ [
ĤSC(A)(0),

]
−, or ∼ [

ĤSC(A)(0) + Ĥ liq. cryst. media
DD (A)0,

]
−,

as exemplified in [7–11,18–20] and [45–47], respectively. In the QL equation context,
both the equivalent forms of bases,

{|kqv〉〉} ≡
{∣∣∣∣(2k 0

k + q
)〉〉}

,

and the superboson or unit-tensor,{〈〈2k [·] 0〉〉},
exhibit similar dual group transformational properties, beyond unitary aspects [1,3].
Further, these sets allow for the following Liouvillian form of mapping [28] over the
now augmented carrier space,H̃ ≡ ∑

v{
⊕
(·) H̃

(·)
v }, within the fundamental Liouvillian

carrier-based mapping:

Ũ × P : H̃→ H̃
{
Dk

(
Ũ
)× ̃ [̃λ](v)(P) ∣∣ Ũ ∈ SU(2),P ∈ Sn

}
. (21)

Here the now explicitv labelling contains both thēv = (k1, . . . , kn) (field), as well as
the recoupling labels or scalar invariant aspects. The new carrier space is clearly a direct
sum of all suitablẽHv subcarrier spaces withp � 22 now describing the partite forms
of [̃λ] irreps, and with

H̃ ≡
∑
v

⊕
λ̃

H̃(̃λ)v
∣∣[ λ̃] ≡ [λ] ⊗ [

λ′
]}
,

and generating simply-reducibleHv subspaces, despite the non-SR properties of ITPs in
general.

The equivalent inner tensor product as a function ofk-rank (via the{j, j ′}s of
Hilbert space) is simply{[

λ̃
]} ≡ [n/2+ j, n/2− j ] ⊗ [

n/2+ j ′, n/2− j ′] ∀ (
j ⊕ j ′) = k, (22)
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with j, j ′ as implied above. The specific forms ofv-labelling are discussed in detail
elsewhere [1,11]. Naturally, this expression is consistent with properties discussed pre-
viously [14–17], i.e., in terms of̃Xi,Xi (Liouville/Hilbert space) class (cycle) operators
over theSn algebra for which one has

X̃iT k,q(v) ≡ XiT k,q(v)X†
i ∀X̃i, Xi ∈ Sn, (23)

where the equivalent (superoperator)Pλ projection action becomes

Pλ̃T k,q(v) ≡ PλT k,q(v)P†
λ′ ∀ (

λ⊗ λ′) = λ̃. (24)

This is in accord with the direct product nature of Liouville space, demonstrated in
detail in [14–17] for theDk(Ũ) × ̃ [̃λ] as irreducible representations (irreps) under the
dual group. Naturally, there is a Liouvillian analogue to Yamanouchi-symbol-based
transformations (i.e., matching equation (17) above).

For corresponding Liouvillian ladder operations as unitary group aspect of the
dual group now in context of the superbosons (as defined in [24,25,28]) and with
Î+ = [s1s̄2, ]−; Î− = [s2s̄1, ]−, one has the pair of expressions:

Î±
∗
y (s1s2) −→ (s21)

(s22)
, (25)

and (retaining a consistent upper (lower) choice throughout) also that

Î±
(s22)

(s21)
−→ (s1s2)

(s2s1)
, (26)

which serves to define a complete set underlying the ladder superoperators. Such actions
necessarily derive from the Heisenberg super-generator formalism [28], i.e., as defined
by the right-derivation-based [2,26,27] commutator properties:[(

s̄2i
)
,
(
s2j

)]
− ≡ 2δij for 0< i, j � 2.

Equally, the direct product nature of Liouville space representations, in terms of
Hilbert space irreps, allows for the alternative direct product decompositional defini-
tions. These are comprised of direct sums, or direct differences, i.e., over the original
boson structure to yield the superboson maps. This aspect of Lie-algebra-based represen-
tation theory was not explicitly mentioned in our 1993 paper [28]. Since this view yields
a particularly direct confirmation of our earlier Heisenberg super-generator based maps,
it deserves wider recognition. The appendix gives the specific details of these a forms of
superboson mappings for the 8 non-trivial actions or representational correlations. For
brevity, we shall largely omit further details of the adjoint bosons/superbosons and the
structural sign question associated with equations (A1)–(A5), despite its importance in
the context of Lie algebra [26–28]. More specific comments on the nature of superboson
actions may be found from equations (50), (51) and [28, section 7]. Both [26,28] ex-
tensively discuss the fundamental orthogonalities (or invariant unit-operators) of bosons
(superbosons) and their augmented Wigner/Racah algebras.
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7. QL tensorial bases and graphical recoupling

7.1. Analytic transformations [3] for graph-based Liouville space formalisms

Naturally forIµ ≡ [Iµ, ]−, the above superboson formulation is totally consistent
with the various{I±,0} actions on{|kqv〉〉} bases given in [1–3,11,14–17], as expressed
by

I± |kqv〉〉 ≡ {
(k ∓ q)(k ± q + 1)

}1/2 |k, q ± 1, v〉〉, whereas
∗
y I0|kqv〉〉 ≡ q|kqv〉〉,

(27)

with the dot-product spin superoperatorÎ2 = [Î • Î , ]− yielding

Î2|kqv〉〉 ≡ k(k + 1)|kqv〉〉, (28)

where the{|kqv〉〉} bases here are explicit (outer) tensorial forms, rather than shift-
bases [51].

The form of integer rank tensorial bases may be simply related to the frequently
used{|IM〉〈IM ′|} basis forms by standard transformations (here in the phase and the
notation of [3,14,15]), such as

Yk,q ≡ |kq〉〉 = ik[(I )(k)]1/2 ∑
MM ′
(−1)I−M

(
I k I

−M q M ′

)
|IM〉〈IM ′|, (29)

(where for compactness the(a)=̇(2a + 1) notation has been adopted), or its inverse:

|IM〉〈IM ′| = [
(I )

]−1/2
(−1)I−M

2I∑
k

k∑
q=−k

(−i)k[(k)]1/2
(
I k I

−M q M ′

)
Yk,q , (29a)

while the tensorial formT k,q(1 . . . 1) for the simplest spin ensemble may be cast into a
recoupling expression, analogous to equation (29a), namely:

T k,q
(
k′k′′

) (≡∣∣kq(k1k2)〉〉)
≡ [
(k)(Ii)

]1/2 ∑
q ′q ′′
(−1)k1−k2+k(−1)k−q

(
k k′ k′′

−q q ′ q ′′

)
Yk′,q ′Yk′′,q ′′ . (30)

Further (unitary-based) graphical recoupling schemata involving, e.g.,{T k{K̃}(111)} etc.,
may be found in Sanctuary’s early (1976) work [3] on the wider graphical schematic
unitary group structures of Liouville space. Of special interest in the specific context
of Sn auxiliary labelling of|I outM(. . .)V〉〈I outM(. . .)V |, versusT kqṼ (k1 . . . kn) bases for
uniform ensembles in respectively Hilbert and Liouville spaces is the fact that there is
no known analytic transformational relationship, in terms of either the democratic or
Ym-based projectiveauxiliary labels for higher indexedSU(2) × Sn�4 -based sys-
tems. This observation is compatible with Galbraith’s 1972 views on democratic re-
coupling [21] within multi-invariant-based systems.
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Table 2
Some example representations for{T kq(11: [̃λ])} dual tensors over the(αα, (αβ + βα)/21/2, ββ;
(αβ − βα)21/2) adapted primary Hilbert set (after [16]). Note the coherence transfer implication to the
representational structure of the[1̂1] symmetry breaking tensorial component. For the cardinalities of vari-

ous adapted dual tensorial sets, see [11,17,36,57,58].

T 11(11: [1̃1])≡


0 0 0 −1
0 0 0 0
0 0 0 −1

0 0 0 0


/

21/2

T 22(11: [̃2])≡


0 0 −1 0
0 0 0 0
0 0 0 0

0 0 0 0


/

21/2

T 20(11: [̃2])≡


−1 0 0 0

0 2 0 0
0 0 −1 0

0 0 0 0


/

61/2

The value of purely unitary integer-rank tensorial bases and ofσ (t) density opera-
tor formalisms to NMR has been extensively studied in the 1980s and was reviewed in
some detail, e.g., in Sanctuary and Halstead’s works [3,14,15] and in other works [16,17]
of that era. Here, we merely note that the entities of direct physical interest for NMR,
and related techniques (e.g., nuclear acoustic resonance (NAR)) are theφkq polarisations,
or for NMR:

φ1
q(1 . . . 1) ≡

〈
T k=1
q (1 . . . 1)

〉
,

or, via suitable selective multiquantum COSY experiments [45], in whichq = 1
processes are subjected to phase suppression, whereas their multiquantum analogues
are now retained. In contrast, the solid state NAR is generally only concerned withφ2

±1
or φ2

±2 polarisations, as reviewed, e.g., by Fedders [56].
The form of dual symmetry bases in suitable adapted representations for a simple

tractable NMR case, namely, the two[A]2, is presented in table 2 to illustrate the above
discussion, but such formal representations for more extended systems soon become
somewhat intractable to display. Permutational actions applied to these representations
are set out in [15, tables 8, 9], i.e., based on work first reported in [17]. An under-
lying fundamental theoretical reason for difficulty in handling dual group automorphic
spin symmetry formalisms clearly derives from the lack of any direct general correspon-
dence between graphical recoupling techniques [3] and projective formalisms [16,17],
i.e., in all cases,beyondtheS2 bases of equation (29) and thefew-bodysystem bases
underS3 or S4 ↓ D2, as originally discussed by Lévy-Leblond and Lévy-Nahas [4], and
by Galbraith [21], respectively. It should be noted that the direct use, without tensorial
recoupling over the full cluster, of multispin Lie algebras [20,42,44] totally ignores the
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existence of the essential underlying multiple scalar invariants. It is not to be recom-
mended on the additional grounds of lack of generality – see Sanctuary’s comments,
in [1,14,15] and elsewhere, in the context of the analogous repetitive commutator evalu-
ation question.

In addition to this fundamental theoretical question, Avent’s (mobileliquid-crystal
media) experimentally based work [45] highlights a further NMR problem. This is con-
cerned with applying selective multiquantum techniques to spin systems of high auto-
morphic spin symmetry under thêLSC+ L̂liq. cryst.

DD Liouvillian. To date no way has been
devised of differentiating between any pair of higher degenerate irreps (at or beyond
E, T , G, . . . , analogous[n −m,m], m � n/2) (multiquantal) spectral subspaces typ-
ical of S6, S12, S20 or Sn ↓ G spin symmetries,unlessthey happen to have different
maximalq projective bounds. Hence, it is questionable whether present NMR meth-
ods for generally identifying spectral features associated with specific spin symmetries
and system invariants has proceeded muchbeyondthe double resonance network tracing
methods, as known in principle since the mid-1960s [59–61]. It is not enough just to su-
press all the non-A related lower-q multiquantal features, i.e., in more general problems
than the liquid-crystal media simpleA[B]3 dipole–dipole-based one, considered in [45].
More progress has been made recently with the labelling aspects of the conceptual prob-
lem of describing democratic system invariants [24,25,30,35]. This development rests
on an appreciation of the nature of group subduction in the Yamanouchi chain process.
Recently, Chen et al. [62] considered various algebraic aspects of group subduction, but
only for the rather small cubic groups and specifically based on the orthogonal, rather
than theGLn group chain.

7.2. QL tensorial NMR as models of extended Biedenharn–Louck quantum physics
under democratic recoupling and multiple invariants

The initial discussion on auxiliaryv’s and scalar invariants under the dual group
leads one to revise the earlier (graphical-based recoupling)T k{K̃}(111. . .) notation to now

include the scalar invariants̃V , specifically in a democratic recoupling form [4,21] so on
taking a further trace with the density operator:

φkq {···}(v) ≡ Tr
{
σT kq {K̃}(v)

}
or φkq {Ṽ}(v) ≡ Tr

{
σT kq {Ṽ}(v)

}
, (31)

whereṼ ∈ SI(Sn), or as∈ of a route: Sn−1 ⊃ · · · ⊃ S2, as discussed respectively
in sections 4, 6.2 and in [24,25,37,38]. Hence, the dual-group-based spin dynamics is
governed by a more generalised form of von Neumann QL equation, which utilises basis
sets of the form{

T k,q {Ṽ}(v)
} ≡ {∣∣∣∣W ×W{Ṽ}:

(✷✷
✷ . . . ⊗

✷✷
✷ . . .

) 〉〉}
, (32)

in which the (LH) WeylW table products are consistent withSO(5) ⊃ SU(2)× SU(2),
and the right-hand product irreps (Young tableaux) are those of the inner tensor product
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Table 3
The coefficients of some typical ITP(S12) decompositions over{[λ′′]} set (in dominance order [34]) within
theλ = n− i, i written [i] in Butler’s (1971) notation [12,13]. Onlyλ⊗ λ′ ITPs in (or close to) theweak-
branching(WB) limit of i � n/4, which are general forms for high symmetric groups, are mentioned here;
other specific ITP decompositions (of restrictSn index form) are obtainable from symbolic algorithms, or
from the package referred to in [32]. The initial[n− 1,1] ⊗ [λ]; ([n− 2, 2] ⊗ [n− 2, 2]) ITPs are standard
forms [49]. Note that for bipartite forms the nature of the ultimate decompositional components, as[ii′],

totally reflects the form of[i] ⊗ [i′] ITP under examination.

[λ] ⊗ [λ′′](Sn�12): reduction coefficients from decompositions over{[λ′]}
0 1 2 11; 3 21 111; 4 31 22 211.; 5 41 32 311 221..;6 51 42 411 33 321.222.;

7 61 52 511 43 421.331.; 8..

[2] [2] → 1121; 121; 1 1 1 0
[2] [3] → 0111; 220; 1 2 1 1 0; 1 1 1 0.
[2] [4] → 0100; 110; 2 2 1 0 0; 1 2 1 1 0.; 1 1 1 0..
[3] [3] → 1121; 221; 2 3 2 1 0; 1 2 2 1 1 0; 1 1 1 0 1 0
[3] [4] → 0111; 220; 2 3 1 1 0; 2 3 3 1 1 0; 1 2 2 1 1 10; 1 1 1 0 1..

Non/WB:
([4] ⊗ [4])→ 1121; 221; 3 3 2 1 0; 1 4 3 2 1 0; 1 2 4 1 2 2 0 1.; . . 1 1 2 1. 1.; .......1
S16: WB Lt:
[4] ⊗ [4] → 1121; 221; 3 3 2 1 0; 2 4 3 2 1 0; 2 3 4 1 2 2 0 1.; 1 2 2 1 2 1. 1.; 111010.1

(ITP) group,

[λ]Sn ⊗ [λ]Sn →
({. . .}S2n

) ↓ Sn → ∑
λ̃′
c[λ],[̃λ′]

[
λ̃′
]
(Sn), (33)

which generally span a non-simply reducible set. For clarity of notation in context
of ITPs, the Liouville space irreps are denoted by[̃λ]. Several examples of these
S12�n�(20)-based ITPs [32–34,39], as components of equations (34) and (35) below, are

given in table 3. For brevity therein, we have utilised the Butler[µ] ( •≡[n − µ,µ]) ab-
breviated irrep-notation [12,13]. The whole question of the general role of ITPs for high
index, weakλ � n branched bipartite irreps in group structure has received algorithmic
consideration recently [63].

The resultant tables from the bipart irrep ITP decomposition(s) necessarily span at
most the sets ofp � 22 part partitional forms. They are known to play an equally im-
portant role to Kostka coefficients in the structures (and inverse problem solutions [49])
associated with group embedding [5,36]. Various standard ITP decompositional maps
were given elsewhere in the context of isotopomer statistical weight structures [5,40,49].
One way of representing more general{Ṽ} system invariants beyond the few-body spin
ensemble case has been suggested [24,25] recently, utilising the Yamanouchi group-
chain subduction hierarchy [35]. To demonstrate these features, one first requires the
SU(2)×Sn dual irrep sets as functions of tensorial rank, as set out in a following section.
Naturally, the reasons for our specific interest in both these mappings and their associ-
ated SIs for spin ensemble/systems arise from the ways in which they serve to define
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various distinct aspects of (dual group) tensorial sets. In turn, these bases allow one to
define the properties of Liouville space, as utilised in multispin NMR evolution [10,11]
and spin dynamics [1,2,14–20].

8. {T k{Ṽ}(111. . . : [̃λ])} dual tensorial structure by rank alone

8.1. Outline derivation via Schur functions via Hilbert space properties

Dual tensorial sets are most conveniently derived [30] from Schur function (SF)
descriptions ofSU(2) Hilbert space [7,8], i.e., based on simply-reducible Hilbert space
1 : 1 mappings over{∣∣IM( )〉} → a

{{µ̂}a}, for {µ̂} ≡ {0}, . . . , {n/2}, asM = I, I − 1, . . . ,0,

in order, for the bipartite Schur functions as a consequence of earlier relationship, equa-
tion (18), so that|II (. . .)〉, . . . , |I0(. . .)〉 ≡ {̂0}, . . . , {̂n/2}, and more generally over the
so-called reduced space – since theSn group is a subgroup of theGL group. Hence,
to obtain the tensorial space structure (here extending the ITP-based 1989 work [11]
on [AX]4, by both rank andq-projection) one evaluates successive minor skew-diagonal
sums of products of SFs, i.e., starting the calculation from the maximalM forms,M = I ,
for the outermost integerk-rank. On restricting the presentation to the essential{T k{Ṽ}(v)}
component set(s) overdecreasing rankwith the help of thestrictly bipartiteSchur func-
tion products, from equations (12)–(15) [31] under (for its generality) a highn-index,
weakλ � n (partitional) branching constraints, one obtains the following (outer)k-rank
structure:{∑

v,i

T
kmax−i
{·} (111. . .)

}
∼

{∑
i

T
kmax−i
{·} (. . .)

}v
+

{∑
i

T
kmax−i
{·} (. . .)

}v′,v′′,...
. (34)

In terms of the final (reduction) coefficients ofSn reduced-space bipart Schur products
(over dominanced-ordered irrep setL defined below), as detailed in [29], this becomes:

{
T k{Ṽ}(v)

}(
SU(2)× Sn

)

∼



1000;
1100;
1111;
1111; 110;
1111; 111; 11100;
. . . ;



v

L(Sn)+



0000;
0100;
1220;
1442; 310;
2483; 650; 24000;
. . . ;



{·}

L(Sn), (35)
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with the final{·} (superscript) labelling indicating thatall the remaining(v′, v′′, . . .) aux-
iliary components are included (i.e., forpresentationalpurposes) in this second factor
(though belonging conceptually to a series of simply reducible subspaces), and where
the irrep set

L† ≡ {[0], [1], [2], [11]; [3], [21], [111]; [4], [31], [22], [211], . . . ; . . .}Sn (36)

is given (after Sagan) in its full dominance order [34].
The products invoked here in deriving theseSU(2) × Sn tensorial set structures

are those of strictly bipartite forms of Schur functions(SFs) for high indices – and con-
sequently, in a weakλ � n branching limit – with the standard multiple usage of the
Littlewood-Richardson rule replaced by a product decompositional mapping on sub-
group restricted space [63] of some simply reducible(SR) SF set. These are subsequently
decomposed onto irrep space by use of Young’s rule [30,64] (and its non-simply re-
ducible Kostka coefficients), with adequate sample total ITP decompositional processes
being derived via independent symbolic group algebra to confirm the individual ITP
results. It is important to stress the point about weak branching, as provides the gener-
ality in these and our earlier calculations [29,64]. Otherwise, the SF products would be
tedious to evaluate. For higher branched (multipartite) forms, the SF mappings undoubt-
edly would be non-simply reducible and hence less accessible. The specific roles of the
weakly-branched bipartite SF product maps onto SFs on restricted space and of the sub-
sequent SF Young rule decompositions follow, e.g., directly from [29, equations (12)–
(15)]. In addition for the auxiliary factors, an alternative way of representing the demo-
cratic invariant labels inherent in these dual tensorial sets exists via group subduction
(chain) properties. These are outlined in table 4 for the specific case of[A]6, of say
[A]6X, via the Yamanouchi chain properties of{[λ]}(S6) irreps, and more generally via
brief examples drawn from the[A]12(S12) spin ensemble, as given in appendix A. A full
description of the reduction coefficient sets derived fromS12 irreps is available in related
works of ours [24,25,30].

8.2. An inherent limit to[A]n(Sn) coherence transfer modelling

It is long established [1] that the use of tensorial bases reduces the commuta-
tor problem of|IM〉〈IM| formalisms for weakly coupled systems [42–44] to well-
established graph theory coefficients. For multiquantum processes of[A . . .]n systems,
a hierarchical approach to symmetry labelling has been suggested by Avent [45] and
other workers [46], for examples based on either scalar coupling, or in the presence of
both scalar and dipolar coupling in liquid crystal media [46,47]. Both here and in stud-
ies of isotopic mixing [44], or in other coherence transfer studies [16–20], the systems
studied were under some modest orderSn ↓ G subgroup, e.g.,S4 ↓ D2 as the highest or-
der group to which the Galbraith’s analytic restrictions concerning multi-invariant-based
systems does not apply. In contrast to weakly coupled spin system of [14,15,19], the co-
herence transfer studies of Sanctuary [14], Temme [16], Listerud et al. [18] have all

focussed on the role ofφk(=n−1)
q (1 . . . 1: ˜[n− 1,1]) dominated (maximal multiquantum)
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Table 4
The Yamanouchi chain (YC) derived de-
mocratic auxiliary labels, analogous to the
known 15 independent scalar invariants of the
[A]6(S6) system whose Liouvillian irreps are
known, e.g., from the ITPs of [63]. The analo-
gous YC reduction coefficient hierarchy forS9

irreps will be found in [24,25].

[6] [5] ⊃ [4] ⊃ [3] ⊃ [2]
[51] [5] ⊃ [4] ⊃ [3] ⊃ [2]
[51] [41] ⊃ [4] ⊃ [3] ⊃ [2]
[51] [41] ⊃ [31] ⊃ [3] ⊃ [2]
[42] [32] ⊃ [31] ⊃ [3] ⊃ [2]
[42] [41] ⊃ [31] ⊃ [3] ⊃ [2]
[42] [41] ⊃ [4] ⊃ [3] ⊃ [2]
[411] [41] ⊃ [4] ⊃ [3] ⊃ [2]
[411] [41] ⊃ [31] ⊃ [3] ⊃ [2]
[33] [32] ⊃ [31] ⊃ [3] ⊃ [2]
[33] [32] ⊃ [31] ⊃ [21] ⊃ [2]
[33] [32] ⊃ [22] ⊃ [21] ⊃ [2]
[321] [32] ⊃ [31] ⊃ [3] ⊃ [2]
[321] [32] ⊃ [31] ⊃ [21] ⊃ [2]
[321] [32] ⊃ [22] ⊃ [21] ⊃ [2]

processes [48], which themselves draw on an initial subhierarchy immediately under
that associated with the constants-of-motion. However, many NMR workers still utilise
product bases even when their systems are actually strongly coupled, simply to avoid us-
ing fully recoupled tensorial bases. This is regreted, since there are inherent advantages
to tensorial bases and represent an established theoretical technique for the calculation
of most spectroscopic quantities. To appreciate the full dual group dynamical system
structure of[AX]n or AXn NMR spin systems, including their democratic recoupling
which establishes their scalar invariant forms, use of dual tensorial bases is essential.
The value of dual symmetry is highlighted in studies of the role of the auxiliary la-
bels (defining the scalar invariants) in projective representational mapping, a property
only demonstrablein the form of Ũ × P Liouville space (tensorial) actions [28], i.e.,
as indicated in equations (21)–(25). This physical observation constitutes a particularly
insightful reason for the conceptual use of (democratically recoupled) tensorial bases,
well beyond arguments, concerning their purely mathematical convenience, or the spec-
troscopic generality of such methods. Further in the context of phase-based selective
multiquantum COSY techniques, the rank and quantal orders associated with specific
irrep spin symmetry manifolds become significant selective physical labels as demon-
strated in multiple quantum NMR, by Avent [45] in the 1980s.

This section has stressed the interdisciplinary nature of reduced space Schur func-
tion modelling as it applies to spin physics [29–31,36], or isotopomer statistical weight-
ings (with latter equally derivable from ITP formation of biclusters comparable to the
processes in equation (23)), and hence finally to NMR evolution [8–11,45–47], or co-
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herence transfer processes [16–20,48] within[A . . .]n(Sn) ensemble systems. Only an
absolute minimum of necessary theoretical background has been included here in order
to outline the properties of uniformn-fold spin ensemble systems and their associated
(democratic recoupled, invariant-based) auxiliary terms, which specify the form ofH̃v
carrier subspaces.

9. Concluding comments

In the main presention of these ideas, we have focussed on three aspects of the
(independent) scalar invariants of uniformn-fold spin systems under the dual group and
shown just how the interrelation between unitary andSn component groups (of dual sym-
metry) yields valuable direct combinatorial insights inton-fold spin ensemble physics
of NMR in mobile (or liquid crystaline) media, or likewise into the structures of dual
tensors as NMR bases of some relevence to quantum informatics applications. The
SIs associated with dual tensors necessarily incorporate the (non-explicit) time-reversal
TRV-properties in Weyl’s original approach [23] and the|D0(U)((⊗SU(2))(2n))| (linear-
recoupling) enumerations [22]. TRV effects become explicit parts in projective dual
group approach to SIs. A universal representational physics approach to auxiliary
forms, via the Yamanouchi–Gel’fand chain (YC), was the subject of other recent
work [24,25,35], as it represents a viable alternative auxiliary labelling to that derived
from the standard Jucys graph theory as used by Sanctuary [3] in the mid-1970s. How-
ever, the numbers of distinct YC routes [24,25,35] possibly may be over-determined for
higher index cases, i.e., compared to the numbers of independent SIs derived here. The
specific purpose of our original enquiry into dual-group-based decompositional formal-
ism for |SI|, and the related matters discussed in sections 2–5 above, was to confirm the
actual values forN(2n=12)

SI , N
(2n=20)
SI pertinent to twelve-, twenty-fold dual group tensorial

sets. Since other aspects of these tensorial structures have been derived in some detail
elsewhere [29–31] (via{|IM( )〉} basedspecialised bipartiteSchur function (product)
decompositions over restrictedGLn subgroup spaces [63]), the present interest repre-
sented a final stage in understanding these foundations of physics. For individual ITPs
one is necessarily considering SF products derived from (SF based) difference expres-
sions [64] in the specific weak-branching (high index) limit indicated.

The form of table 1 and the nature of sections 4, 5 here both stress that atleastthe
N(2n)f , N′(2n)

f , . . . fundamental components of SIs are accessible forany(2n) index-value
dual group. Modelling of TRV weightings over higher odd-valued (prime)n values (of
(2n)) introduce certain difficulties from implicit underlying algebro-geometric consider-
ations, i.e., concerning thenon-existence of progressive regulargeometric solids above
(2n) > 12 apicial solids. The value of democratic recoupling for higher(2n) fold (cage-
like) spin ensembles has been stressed. The central portion of the paper and the proofs
of the representational form of superbosons, as set out in appendix A, both highlight the
existence of useful explicit correlations between NMR QL formalisms and combinatori-
cial aspects of theoretical physics, including aspects ofSn-based decomposition. In the
early sections of this work, it was shown how such concepts give an alternative projective
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route to the numbers of independent scalar invariants under impact of explicit TRV in-
variance (dual-group-based) factors. However, algebraic geometric considerations apply
to higher index applications of the modified Weyl TRV theory for uniform spin ensem-
bles, comparable to the Galbraith criteria [21] for the analytic use of democratic recou-
pling. The 1993 work on superboson mapping [28], which itself augments the original
Hilbert space views of Biedenharn and Louck [2], should be consulted for fuller details,
and additional discussion of orthonormality and other interesting properties of Wigner
unit-tensors. Clearly, (dual group) carrier space maps [26,27] and unit-tensors [2] lie at
the essential core of quantum physics related touniformn-fold spin ensembles.

A remaining fundamental question concerns the realisation of{Ṽ} democratic re-
coupling, either analytically or in terms analogous to graph-theoretical schemes, for
n � 4 fold spin systems of high degeneracies as a result of their inherent multiple
scalar invariant structure. This has remained a largely open question in the theoreti-
cal physics literature, to the best of our knowledge. However, perhaps some starting
point from which to attack this long-standing high-degeneracy-induced problem asso-
ciated with multiple scalar invariant systems may be seen in the recent work due to
Chen et al. [62]. This actually treats a simplerO(3) based chain problem, involving
cubic symmetries. Galbraith’s contention [21] regarding these multiple invariant-based
(Hilbert) spin systems clearly remains of primary theoretical importance, e.g., in helping
to explain why perturbation theory in the alternativestrongly coupled limit[65] has not
developed further to include the[A]n�4(Sn) forms which underlie, e.g., the[AB . . . XY ],
[ABCD . . .] NMR spin systems. In addition, from other related work on uniform spin
ensembles [57,58], it has been noted also that the number of possible spin-1/2 related
mathematically determinable forms ofSn ↓ G Cayley-compatible (automorphic) group
embeddings is strictly limited [66].

It is of some topical interest to view deceptive NMR spin systems [67] in a new
role, as forms ofintercluster{J } interaction (graph-based) networks, which exhibit prop-
erties that approach those of certain analogous “small world” model networks [68]. Such
general view is comparable to Balasubramanian’s conceptual work [6] on NMR ensem-
ble spin systems as (group-based) networks, i.e., as being analogues of automorphic
(zeroth-order-based ensemble) spin symmetries. The inherent correspondence between
super-positional (SP) bases and dual-group-adapted uniform spin ensemble bases im-
plies that studies of tensorial structure and numbers of scalar invariants have specific
pertinence to the foundations of quantum physics, and thus also to quantum informatics,
as realised via recent experimental NMR physics and modelling [69–71]. On the basis
of the role of auxiliary SI-based terms in dual tensorial bases for dynamical uniform
spin systems (as the equivalent forms of (coherent) SP bases), the (unrestricted) dynam-
ical process of teleportation in quantum computing is necessarily restricted ton � 4
equivalent nodes. This view is a consequence of theoretical physics arguments previ-
ously employed, i.e., in the context of democratic recoupling [21] and the natural of dual
QP mapping presented above. Our penultimate point concerns the existence of relation-
ships between geometric polyhedral combinatorics and democratic or projective-based
recoupling, from the viewpoint of Landau-likeSn decompositional maps of the statisti-
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cal portion of the calculations presented above. The statistical submodel is the origin of
the constraint (previously noted in section 5) on defining the (dual) auxiliary tensorial
labels for uniform ensembles ofSn indices of 2n � 12. This is physically reasonable in
ensemble NMR, since local spin symmetries will eventually dominate dual-group-based
NMR Liouvillians derived from larger uniform polyhedral cage ensembles. No compa-
rable constraint is explicitly associated with (simple Hilbert) CNP permutations as these
are simply statistical weights.

Viewing QP mappings within a Liouvillian superboson perspective [28], and utilis-
ing the necessary decompositional statistical maps, has proved invaluable in presenting
the above work. A final consequence is that the (dual group)S2n invariants of democrat-
ically recoupled uniform multispin NMR spin ensembles are seen as essential forms of
quantum entanglement (as being at the foundations of quantum theory) for the types of
models discussed above. Indeed, the explicit carrier subspatial mappings and dynamical
system structures as Liouvillian entities indicate that for these uniform spin ensemble
and formalisms, there is now little real need to refer to any other forms of quantum en-
tanglement.6 In the Liouville structural view, the role of recoupling in furnishing system
invariants as auxiliary labels (and disjunct subspaces in appropriate cases) is quite clear
and precise, whereas in Hilbert space or product formalisms the possibility of presence
of non-graphical recoupling and operator bases with (quasi-)S2n invariants is often ig-
nored. The latter is frequently the case in presentations discussing quantum computing
which tend to restrict their views to Hilbert space AMX formalisms, despite Sanctu-
ary [14] having shown the valve of superpositional operator bases in an analytic treat-
ment ofφ1

1(11) coherence transfer.7 By considerating uniform multispin models and
focussing on (superboson) mapping, the work provides a rather precise view of quantum
entanglements, even if their physical realisation under democratic recoupling may not
be universally analytic, (or) global (2n)-ensemble properties of known cardinality, for
reasons given above.

Strong additional support for our presentgeneral-n limit view concerning the na-
ture of uniform (j1 . . . j2n), or (k1 . . . k2n), labelled (Hilbert or Liouvillian) tensorial
sets of spin physics, i.e., as being subject to eventual indeterminacy in respect to their
scalar invariant cardinalities is now available from a very recent mathematical physics
study [72], due to Atiyah and Sutcliffe. They find in presenting the analogous simul-
taneous mappings associated with the formally-relatedSO(3) × Sn double group, as
compared to dual group of NMR spin physics of the main text here, that there is an
inherent incompatibility between linear (graphical) recoupling of their extended uni-
tary mapping in the presence ofuniform subset auxiliary labelling, or other forms of
degeneracy. The latter is shown to invalidate the simultaneous unitary andSn map-
pings for some general-n limit, as predicted by Galbraith [21] in his group-theoretic
discourse ondemocratic recouplingin the 1970s. The only valid conclusions which
may be drawn in the NMR spin ensemble context is that the degeneracy associated with

6 Or even to introduce EPR ideas [69–71].
7 As compared to the ensemble dual group view of [16,17].
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uniform auxiliary labelled dual tensors (under democratic recoupling) accordingly ren-
ders the|D0(U)((⊗SU(2))2n)| simple unitary approach (and the four specific 2n � 14,
(. . .)b|SI|total values for uniform spin ensembles in the final column of table 1) physi-
cally invalid in the generaln limit of these uniform auxiliary tensorial sets. This occurs
because the full simultaneous mapping, either under the double group of [72], or under
the dual group utilised in the main text, breaks down in the presence of such(ji, . . .),
or (ki, . . .) degeneracy. This structural aspect of these (uniform)SU(2) × Sn tensorial
sets (for generaln) has not been recognised in the quantum physics literature, apart from
being implicit in Galbraith’s views [21] of democratic recoupling. The presentation in
section 5 above demonstrates how the linkage between algebraic geometry and combi-
natorics serves to confirm this group-theoretic result. The conceptual basis [72] for this
important result was reported whilst this manuscript was already ‘in press’.
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Appendix A. DP dual-group representations of superbosons

The direct product (DP) nature of the structure of Liouville space under the dual
group allows one to realise the correlations between boson of the primaryH carrier space
and superboson over̃H of the augmented spin space, as, e.g., in the followingSU(2)×Sn
dual group mappings [64], for individual quasi-particle based onk = 1:

(a1 ⊗ a1)(⊕) −→
(
s21

) −→ 〈〈
2

2 · 0
2

〉〉
(A.1)

for a (Liouvillian shift term)�̃ = 1, (k+q) = 2 augmented shift and lower component,
whereas

(a1 ⊗ a2)(⊕) −→ (s1s2) −→
〈〈

2
2 · 0

1

〉〉
(A.2)

for correspondingq = 0 superboson, and finally

(a2 ⊗ a2)(⊕) −→
(
s22

) −→ 〈〈
2

2 · 0
0

〉〉
(A.3)
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for q = −1 or (k + q) = 0 superboson with the same shift term as in equations (A1)
and (A2) and where these outer left-/right-hand forms are generic described as being of{

〈2j
[ ·
··
]

0〉
}
:
{
〈〈2k

[ ·
··
]

0〉〉
}

Hilbert, or Liouville space, forms, respectively. Here the upper (lower) segment compo-
nents of the double Gel’fand shape are respectively:

(j +�), {(k + �̃)}
or î(·),

{˜̂i(·)}: ((j +m), {(k + q)} or k̂(·),
{̃̂
k(.)

})
.

The form of ordering (over a boson, superboson field) for the subscript indices are those
pertinent to equations (16a) and (16b) of the main text.

Likewise, the adjoint bosons (superbosons) (of zero upper segment representational
form) exhibit similar form with variation in the upper portion of the inner-[·] portions,
as in the generalised set of adjoint boson mappings:(āi ⊗ āi′ .)(⊕/") −→ (

s̄2i
) −→ (sign)〈〈2

0
·
··

0〉〉
 ,

for suitablei, i′ labels and sign; here decomposition of⊗ (left-hand side) may involve
either ⊕ or " non-trivial evaluations of resultant superboson representation(s). This
approach provides more direct insight into the sign aspects of adjoint superbosons than
was possible in the earlier work [28].

Hence, one finds the following pair of superboson, derived as indicated, map onto
the related pattern bases:

(ā1 ⊗ ā1)⊕
(ā2 ⊗ ā2)⊕

−→ (s̄21)

(s̄22)
−→ (±)

〈〈
2

0

(02)

0

〉〉
(A.4)

and

(ā1 ⊗ ā2)" −→ (s̄1s̄2) −→ (+)
〈〈

2
0

1
0

〉〉
, (A.5)

for the increasing ordering of adjoint forms shown. Hence overall, there are eight non-
trivial superbosons within the set, with the negative external sign in the mapping apply-
ing only to the subset:{(s̄22), (s̄2s̄1)}. On this premise, it follows that the actions of the
following superboson subsets:

(s21) (s̄21)

(s22) (s̄22)
, and

(s1s2)

(s̄1s̄2)
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(consistently usingall upper (lower) options throughout left-/right-hand sets) are respec-
tively:

(s21)

(s22)

∣∣∣∣(2k 0
(k + q)

)〉〉
−→

[
(k ± q + 1)

(2k + 1)

]1/2∣∣∣∣((2k + 2) 0
(k + q + 2

0)

)〉〉
, (A.6)

while,

(s̄21)

(s̄22)

∣∣∣∣(2k 0
(k + q)

)〉〉
−→ (±)

[
(k ∓ q)
(2k + 1)

]1/2∣∣∣∣((2k − 2) 0
(k + q − 2

0)

)〉〉
, (A.7)

whereas one finds (respectively) that:

(s1s2)

(s̄1s̄2)

∣∣∣∣(2k 0

(k + q)
)〉〉

−→ (+)
[(
k − q + 1

k − q
)/
(2k + 1)

]1/2∣∣∣∣((2k ± 2) 0

(k + q ± 1)

)〉〉
. (A.8)

On considering[A . . .]n n-fold spin ensembles, the action of bosons/superboson
on members of the basis sets of dual group irreps are naturally restricted to the bounds
associated with the scalar invariant (auxiliary) labelling of the specific{H̃v} carrier sub-
spaces. Additional comment on the more technical theoretical physics properties, such
as various forms orthonormality and descriptions of the nature of the Wigner fundemen-
tal (super)operators (alias, the unit tensor operators based on Racah step-functions) will
be found in [28], while details of the nature of the{Ṽ} set(s) may be found in [24,25,30].
The correspondence between Gel’fand patterns and Weyl tables takes an especially sim-
ple form – see, e.g., equation (18) in Biedenharn’s 1979 discussions [26].

Appendix B. SU(2)× S12 (. . .S20) YC reduction and FG embeddings

B.1. The twelve-fold YC-based invariants via a reduction hierarchy

The stepwise Yamanouchi-based subduction (YC) hierarchy introduces the(n− 2)
correct number of labels. It also acts to retain the impact of the characters of the orig-
inal irreps subsequently as constraints at each step, i.e., on the sum of the products of
derived reduction coefficients and associated subduced characters. The following ex-
amples, over the coefficient sets of (for brevity) limited portions of the irrep hierarchy,
should suffice to demonstrate these YC constraints, for (generally non-simply reducible)
reduction coefficient sets within

S12 ⊃ · · · ⊃ {
c[λ′]

[
λ′
]}
L′(S10) ⊃ · · · ⊃ {

c[λ′′]
[
λ′′

]}
L′′(S6) ⊃ · · · ⊃ {c[2], c[11]}(S2),

which from specific initial irreps gives rise to following reduction coefficients under the
YC process:

[11,1] → {2,1,0,0; . . .}L′(S10)→ {6,1,0,0; . . .}L′′(S6)→ {10,1}L(S2) (B.1)
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[8,4] → {0,0,1,0;2,0,0;1, . . .}L′ → {15,20,1,0;5}L′′ → {200,75}(S2)

for χ [8,4] = 275, (B.2)

[8,22] → {0,0,1,1;0,1,0;0,0,1}L′ → {30,40,15,15;0,1}L′′ → {420,196}
for χ [822] = 616, (B.3)

and, as a final example,

[444] → {. . .}L′ → {0,0,9,5;10,16,0;5}L′′ → {252,210}(S2) for χ [444] = 462.
(B.4)

As labels for the scalar invariants, only the number of distinct routes contributing to the
labelling over this hierarchy which terminate on the[2](S2) irrep need be considered.
In view of overdeterminacy, the intermediate self-associate irreps are largely excluded
from the initial portions of these route maps, also. Fuller details of the complete set of
YC maps under theS12 group are the subject of related work [30]. Table 4 of the main
text exemplifies the independent SI labelling via Yamanouchi-chain-derived route maps
originating from variousS6 group irreps.

B.2.S20 ↓ I natural finite group embeddings

In certain contexts, such as for the liquid-crystal media, dipole–dipole NMR spec-
tra of dodecahedrane, additional group embedding mappings are needed. Such prop-
erties may be derived from comparisons of invariance-derived models with either ITP
forms, or (Kostka coefficient generating) SF decompositional maps [29–33,36,49,64].
The propagation of these enumerative mappings is based on recursive hierarchical
forms [5] from the weakly branchedλ � forms of irreps in dominance order; forS20 ↓ I
examples of group embedding, we consider the following:

[19,1] → {0,2,1,1,1}(S20 ↓ I),
[18,2] → {5,11,17,6,6} for χ [18,2] = 170, (B.5)

[18,11] → {1,11,12,11,11} for χ [18,11] = 171, (B.6)

[17,3] → {15,65,75,50,50} for χ [17,3] = 950, (B.7)

[17,21] → {30,126,162,96,96} for χ [17,21] = 1920, (B.8)

[17,111] → {20,67,81,46,46} for χ [17,111] = 969, (B.9)

[16,4] → {75,249,318,174,174} for χ [16,4] = 3705, (B.10)

[16,31] → {180,754,933,574,574} for χ [16,31] = 11305, (B.11)

[16,22] → {145,505,655,360,360} for χ [16,22] = 7600. (B.12)

These bi- (or multi-) partite mappings (extending those of [49]) define components of
the structure of simple Hilbert (or Liouville) carrier spaces of[12CH]20 dodecahedrane.
The bipartite-based mapping may also be of value in describing endohedral[A]20X spin
systems. The spin statistical weight problem for the uniform[13CH]20 dodecahedrane
molecule is clearly one derived via fermionic nuclear spin subproblems, for its further
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representational (Hilbert space) form, concerned with isotopomer statistics. NMR bi-
clusters needs to be considered in some detail for each specific bicluster ensemble system
in regard to the relative magnitudes of the intra/inter couplings, since use of inner tensor
products (here of the bipartite irreps) implies that the inter-cluster{JH13C}s, of dodeca-
hedrane example above, are much less significant in magnitude than those of the{JHH}
set. This is often not the case for ring (and hence, cage) molecules. Hence, the use of the
specificS20 ↓ I automorphic NMR spin symmetry in terms of product constructs for
the highest 2n valued uniform bicluster needs to be approached with due caution [67].
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